GARCH模型的定义

2024-05-02 18:21

1. GARCH模型的定义

GARCH(p,q)表示如下σt2=ω+Σαiεt-i2+Σβiσt-i2它被广泛的用于金融资产收益和风险的预测。ARCH模型实际上只适用于异方差函数短期自相关过程,相比于ARCH模型,GARCH模型更能反映实际数据中的长期记忆性质。自从Engle(1982)提出ARCH模型分析时间序列的异方差性以后,波勒斯列夫T.Bollerslev(1986)又提出了GARCH模型,GARCH模型是一个专门针对金融数据所量体订做的回归模型,除去和普通回归模型相同的之处,GARCH对误差的方差进行了进一步的建模。特别适用于波动性的分析和预测,这样的分析对投资者的决策能起到非常重要的指导性作用,其意义很多时候超过了对数值本身的分析和预测。

GARCH模型的定义

2. r语言arma-garch怎样预测

原文链接:http://tecdat.cn/?p=20015 
 
本文将说明单变量和多变量金融时间序列的不同模型,特别是条件均值和条件协方差矩阵、波动率的模型。
均值模型
本节探讨条件均值模型。
iid模型
我们从简单的iid模型开始。iid模型假定对数收益率xt为N维高斯时间序列:

均值和协方差矩阵的样本估计量分别是样本均值

和样本协方差矩阵

我们从生成数据开始,熟悉该过程并确保估计过程给出正确的结果(即完整性检查)。然后使用真实的市场数据并拟合不同的模型。
让我们生成合成iid数据并估算均值和协方差矩阵:
# 生成综合收益数据X  [1] 2.44norm(Sigma_scm - Sigma, "F")#> [1] 70.79
现在,让我们针对不同数量的观测值T再做一次:
# 首先生成所有数据X <- rmvnorm(n = T_max, mean = mu, sigma = Sigma)# 现在遍历样本的子集for (T_ in T_sweep) {  # 样本估算  mu_sm <- colMeans(X_)  Sigma_scm <- cov(X_)  # 计算误差  error_mu_vs_T    <- c(error_mu_vs_T,    norm(mu_sm     - mu, "2"))  error_Sigma_vs_T <- c(error_Sigma_vs_T, norm(Sigma_scm - Sigma, "F"))# 绘图plot(T_sweep, error_mu_vs_T,      main = "mu估计误差",

plot(T_sweep, error_Sigma_vs_T     main = "Sigma估计中的误差", ylab = "误差"

单变量ARMA模型
对数收益率xt上的ARMA(p,q)模型是

其中wt是均值为零且方差为σ2的白噪声序列。模型的参数是系数ϕi,θi和噪声方差σ2。
请注意,ARIMA(p,d,q)模型是时间差分为d阶的ARMA(p,q)模型。因此,如果我们用xt代替对数价格,那么先前的对数收益模型实际上就是ARIMA(p,1,q)模型,因为一旦对数价格差分,我们就获得对数收益。
rugarch生成数据 
我们将使用rugarch包  生成单变量ARMA数据,估计参数并进行预测。
首先,我们需要定义模型:
# 指定具有给定系数和参数的AR(1)模型#> #> *----------------------------------*#> *       ARFIMA Model Spec          *#> *----------------------------------*#> Conditional Mean Dynamics#> ------------------------------------#> Mean Model           : ARFIMA(1,0,0)#> Include Mean     : TRUE #> #> Conditional Distribution#> ------------------------------------#> Distribution :  norm #> Includes Skew    :  FALSE #> Includes Shape   :  FALSE #> Includes Lambda  :  FALSE#>          Level Fixed Include Estimate LB UB#> mu        0.01     1       1        0 NA NA#> ar1      -0.90     1       1        0 NA NA#> ma        0.00     0       0        0 NA NA#> arfima    0.00     0       0        0 NA NA#> archm     0.00     0       0        0 NA NA#> mxreg     0.00     0       0        0 NA NA#> sigma     0.20     1       1        0 NA NA#> alpha     0.00     0       0        0 NA NA#> beta      0.00     0       0        0 NA NA#> gamma     0.00     0       0        0 NA NA#> eta1      0.00     0       0        0 NA NA#> eta2      0.00     0       0        0 NA NA#> delta     0.00     0       0        0 NA NA#> lambda    0.00     0       0        0 NA NA#> vxreg     0.00     0       0        0 NA NA#> skew      0.00     0       0        0 NA NA#> shape     0.00     0       0        0 NA NA#> ghlambda  0.00     0       0        0 NA NA#> xi        0.00     0       0        0 NA NAfixed.pars#> $mu#> [1] 0.01#> #> $ar1#> [1] -0.9#> #> $sigma#> [1] 0.2true_params#>    mu   ar1 sigma #>  0.01 -0.90  0.20
然后,我们可以生成时间序列:
# 模拟一条路径apath(spec, n.sim = T)# 转换为xts并绘图plot(synth_log_returns, main = "ARMA模型的对数收益率"plot(synth_log_prices, main = "ARMA模型的对数价格"

ARMA模型
现在,我们可以估计参数(我们已经知道):
# 指定AR(1)模型arfimaspec(mean.model = list(armaOrder = c(1,0), include.mean = TRUE))# 估计模型#>           mu          ar1        sigma #>       0.0083      -0.8887       0.1987#>    mu   ar1 sigma #>  0.01 -0.90  0.20
我们还可以研究样本数量T对参数估计误差的影响:
# 循环for (T_ in T_sweep) {  estim_coeffs_vs_T <- rbind(estim_coeffs_vs_T, coef(arma_fit))  error_coeffs_vs_T <- rbind(error_coeffs_vs_T, abs(coef(arma_fit) - true_params)/true_params)# 绘图matplot(T_sweep, estim_coeffs_vs_T,         main = "估计的ARMA系数", xlab = "T", ylab = "值",

matplot(T_sweep, 100*error_coeffs_vs_T,         main = "估计ARMA系数的相对误差", xlab = "T", ylab = "误差 (%)",

首先,真正的μ几乎为零,因此相对误差可能显得不稳定。在T = 800个样本之后,其他系数得到了很好的估计。
ARMA预测
为了进行健全性检查,我们现在将比较两个程序包 Forecast 和 rugarch的结果:
# 指定具有给定系数和参数的AR(1)模型spec(mean.model = list(armaOrder = c(1,0), include.mean = TRUE),                              fixed.pars = list(mu = 0.005, ar1 = -0.9, sigma = 0.1))# 生成长度为1000的序列arfima(arma_fixed_spec, n.sim = 1000)@path$seriesSim# 使用 rugarch包指定和拟合模型spec(mean.model = list(armaOrder = c(1,0), include.mean = TRUE))# 使用包“ forecast”拟合模型#> ARIMA(1,0,0) with non-zero mean #> #> Coefficients:#>           ar1    mean#>       -0.8982  0.0036#> s.e.   0.0139  0.0017#> #> sigma^2 estimated as 0.01004:  log likelihood=881.6#> AIC=-1757.2   AICc=-1757.17   BIC=-1742.47# 比较模型系数#>          ar1    intercept        sigma #> -0.898181148  0.003574781  0.100222964#>           mu          ar1        sigma #>  0.003605805 -0.898750138  0.100199956
确实,这两个软件包给出了相同的结果。
ARMA模型选择 
在先前的实验中,我们假设我们知道ARMA模型的阶数,即p = 1和q = 0。实际上,阶数是未知的,因此必须尝试不同的阶数组合。阶数越高,拟合越好,但这将不可避免地导致过度拟合。已经开发出许多方法来惩罚复杂性的增加以避免过度拟合,例如AIC,BIC,SIC,HQIC等。
# 尝试不同的组合# 查看排名#>    AR MA Mean ARFIMA         BIC converged#> 1   1  0    1      0 -0.38249098         1#> 2   1  1    1      0 -0.37883157         1#> 3   2  0    1      0 -0.37736340         1#> 4   1  2    1      0 -0.37503980         1#> 5   2  1    1      0 -0.37459177         1#> 6   3  0    1      0 -0.37164609         1#> 7   1  3    1      0 -0.37143480         1#> 8   2  2    1      0 -0.37107841         1#> 9   3  1    1      0 -0.36795491         1#> 10  2  3    1      0 -0.36732669         1#> 11  3  2    1      0 -0.36379209         1#> 12  3  3    1      0 -0.36058264         1#> 13  0  3    1      0 -0.11875575         1#> 14  0  2    1      0  0.02957266         1#> 15  0  1    1      0  0.39326050         1#> 16  0  0    1      0  1.17294875         1#选最好的armaOrder#> AR MA #>  1  0
在这种情况下,由于观察次数T = 1000足够大,因此阶数被正确地检测到。相反,如果尝试使用T = 200,则检测到的阶数为p = 1,q = 3。
ARMA预测 
一旦估计了ARMA模型参数ϕi  ^ i和θ^j,就可以使用该模型预测未来的值。例如,根据过去的信息对xt的预测是

并且预测误差将为xt-x ^ t = wt(假设参数已被估计),其方差为σ2。软件包 rugarch 使对样本外数据的预测变得简单:
# 估计模型(不包括样本外)coef(arma_fit)#>           mu          ar1        sigma #>  0.007212069 -0.898745183  0.200400119# 整个样本外的预测对数收益forecast_log_returns <- xts(arma_fore@forecast$seriesFor[1, ], dates_out_of_sample)# 恢复对数价格prev_log_price <- head(tail(synth_log_prices, out_of_sample+1), out_of_sample)# 对数收益图plot(cbind("fitted"   = fitted(arma_fit),# 对数价格图plot(cbind("forecast" = forecast_log_prices,     main = "对数价格预测", legend.loc = "topleft")

多元VARMA模型
对数收益率xt上的VARMA(p,q)模型是

其中wt是具有零均值和协方差矩阵Σw的白噪声序列。该模型的参数是矢量/矩阵系数ϕ0,Φi,Θj和噪声协方差矩阵Σw。
 
比较
让我们首先加载S&P500:
# 加载标普500数据head(SP500_index_prices)#>              SP500#> 2012-01-03 1277.06#> 2012-01-04 1277.30#> 2012-01-05 1281.06#> 2012-01-06 1277.81#> 2012-01-09 1280.70#> 2012-01-10 1292.08# 准备训练和测试数据logreturns_trn <- logreturns[1:T_trn]logreturns_tst <- logreturns[-c(1:T_trn)]# 绘图{ plot(logreturns,   addEventLines(xts("训练"

现在,我们使用训练数据(即,对于t = 1,…,Ttrnt = 1,…,Ttrn)来拟合不同的模型(请注意,通过指示排除了样本外数据 out.sample = T_tst)。特别是,我们将考虑iid模型,AR模型,ARMA模型以及一些ARCH和GARCH模型(稍后将对方差建模进行更详细的研究)。
# 拟合i.i.d.模型coef(iid_fit)#>           mu        sigma #> 0.0005712982 0.0073516993mean(logreturns_trn)#> [1] 0.0005681388sd(logreturns_trn)#> [1] 0.007360208# 拟合AR(1)模型coef(ar_fit)#>            mu           ar1         sigma #>  0.0005678014 -0.0220185181  0.0073532716# 拟合ARMA(2,2)模型coef(arma_fit)#>            mu           ar1           ar2           ma1           ma2         sigma #>  0.0007223304  0.0268612636  0.9095552008 -0.0832923604 -0.9328475211  0.0072573570# 拟合ARMA(1,1)+ ARCH(1)模型coef(arch_fit)#>            mu           ar1           ma1         omega        alpha1 #>  6.321441e-04  8.720929e-02 -9.391019e-02  4.898885e-05  9.986975e-02#拟合ARMA(0,0)+ARCH(10)模型coef(long_arch_fit)#>           mu        omega       alpha1       alpha2       alpha3       alpha4       alpha5 #> 7.490786e-04 2.452099e-05 6.888561e-02 7.207551e-02 1.419938e-01 1.909541e-02 3.082806e-02 #>       alpha6       alpha7       alpha8       alpha9      alpha10 #> 4.026539e-02 3.050040e-07 9.260183e-02 1.150128e-01 1.068426e-06# 拟合ARMA(1,1)+GARCH(1,1)模型coef(garch_fit)#>            mu           ar1           ma1         omega        alpha1         beta1 #>  6.660346e-04  9.664597e-01 -1.000000e+00  7.066506e-06  1.257786e-01  7.470725e-01
我们使用不同的模型来预测对数收益率:
# 准备预测样本外周期的对数收益# i.i.d.模型预测forecast(iid_fit, n.ahead = 1, n.roll = T_tst - 1)                           dates_out_of_sample)# AR(1)模型进行预测forecast(ar_fit, n.ahead = 1, n.roll = T_tst - 1)                          dates_out_of_sample)# ARMA(2,2)模型进行预测forecast(arma_fit, n.ahead = 1, n.roll = T_tst - 1)                            dates_out_of_sample)# 使用ARMA(1,1)+ ARCH(1)模型进行预测forecast(arch_fit, n.ahead = 1, n.roll = T_tst - 1)                            dates_out_of_sample)# ARMA(0,0)+ARCH(10)模型预测forecast(long_arch_fit, n.ahead = 1, n.roll = T_tst - 1)                                 dates_out_of_sample)# ARMA(1,1)+GARCH(1,1)模型预测forecast(garch_fit, n.ahead = 1, n.roll = T_tst - 1)                             dates_out_of_sample)
我们可以计算不同模型的预测误差(样本内和样本外):
print(error_var)#>                           in-sample out-of-sample#> iid                    5.417266e-05  8.975710e-05#> AR(1)                  5.414645e-05  9.006139e-05#> ARMA(2,2)              5.265204e-05  1.353213e-04#> ARMA(1,1) + ARCH(1)    5.415836e-05  8.983266e-05#> ARCH(10)               5.417266e-05  8.975710e-05#> ARMA(1,1) + GARCH(1,1) 5.339071e-05  9.244012e-05
我们可以观察到,随着模型复杂度的增加,样本内误差趋于变小(由于拟合数据的自由度更高),尽管差异可以忽略不计。重要的实际上是样本外误差:我们可以看到,增加模型复杂度可能会得出较差的结果。就预测收益的误差而言,似乎最简单的iid模型已经足够了。
最后,让我们展示一些样本外误差的图表:
plot(error,     main = "不同模型收益预测的样本外误差",

请注意,由于我们没有重新拟合模型,因此随着时间的发展,误差越大(对于ARCH建模尤其明显)。
滚动窗口比较
让我们首先通过一个简单的示例比较静态预测与滚动预测的概念:
#ARMA(2,2)模型spec <- spec(mean.model = list(armaOrder = c(2,2), include.mean = TRUE))# 静态拟合和预测ar_static_fit <- fit(spec = spec, data = logreturns, out.sample = T_tst)#滚动拟合和预测modelroll <- aroll(spec = spec, data = logreturns, n.ahead = 1, # 预测图plot(cbind("static forecast"  = ar_static_fore_logreturns,     main = "使用ARMA(2,2)模型进行预测", legend.loc = "topleft")# 预测误差图plot(error_logreturns, col = c("black", "red"), lwd = 2,     main = "ARMA(2,2)模型的预测误差", legend.loc = "topleft")


我们可以清楚地观察到滚动窗口过程对时间序列的影响。
现在,我们可以在滚动窗口的基础上重做所有模型的所有预测:
# 基于i.i.d.模型的滚动预测roll(iid_spec, data = logreturns, n.ahead = 1, forecast.length = T_t# AR(1)模型的滚动预测roll(ar_spec, data = logreturns, n.ahead = 1, forecast.length = T_tst, # ARMA(2,2)模型的滚动预测roll(arma_spec, data = logreturns, n.ahead = 1, forecast.length = T_tst, # ARMA(1,1)+ ARCH(1)模型的滚动预测roll(arch_spec, data = logreturns, n.ahead = 1, forecast.length = T_tst,                                                refit.every = 50, refit.win# ARMA(0,0)+ ARCH(10)模型的滚动预测roll(long_arch_spec, data = logreturns, n.ahead = 1, forecast.length = T_tst,                                                     refit.every = 50, # ARMA(1,1)+ GARCH(1,1)模型的滚动预测roll(garch_spec, data = logreturns, n.ahead = 1, forecast.length = T_tst,                                                 refit.every = 50, refit.window
让我们看看滚动基准情况下的预测误差:
print(rolling_error_var)#>                           in-sample out-of-sample#> iid                    5.417266e-05  8.974166e-05#> AR(1)                  5.414645e-05  9.038057e-05#> ARMA(2,2)              5.265204e-05  8.924223e-05#> ARMA(1,1) + ARCH(1)    5.415836e-05  8.991902e-05#> ARCH(10)               5.417266e-05  8.976736e-05#> ARMA(1,1) + GARCH(1,1) 5.339071e-05  8.895682e-05
和一些图表:
plot(error_logreturns,      main = "不同模型的滚动预测误差", legend.loc = "topleft"

我们看到,现在所有模型都拟合了时间序列。此外,我们在模型之间没有发现任何显着差异。
我们最终可以比较静态误差和滚动误差:
barplot(rbind(error_var[, "out-of-sample"], rolling_error_var[, "out-of-sample"])        col = c("darkblue", "darkgoldenrod"),         legend = c("静态预测", "滚动预测"),

我们可以看到,滚动预测在某些情况下是必须的。因此,实际上,我们需要定期进行滚动预测改进。
方差模型
ARCH和GARCH模型
对数收益率残差wt的ARCH(m)模型为

其中zt是具有零均值和恒定方差的白噪声序列,而条件方差σ2t建模为

其中,m为模型阶数,ω> 0,αi≥0为参数。
GARCH(m,s)模型使用σ2t上的递归项扩展了ARCH模型:

其中参数ω> 0,αi≥0,βj≥0需要满足∑mi =1αi+ ∑sj = 1βj≤1的稳定性。
rugarch生成数据 
首先,我们需要定义模型:
# 指定具有给定系数和参数的GARCH模型#> #> *---------------------------------*#> *       GARCH Model Spec          *#> *---------------------------------*#> #> Conditional Variance Dynamics    #> ------------------------------------#> GARCH Model      : sGARCH(1,1)#> Variance Targeting   : FALSE #> #> Conditional Mean Dynamics#> ------------------------------------#> Mean Model       : ARFIMA(1,0,0)#> Include Mean     : TRUE #> GARCH-in-Mean        : FALSE #> #> Conditional Distribution#> ------------------------------------#> Distribution :  norm #> Includes Skew    :  FALSE #> Includes Shape   :  FALSE #> Includes Lambda  :  FALSE#>           Level Fixed Include Estimate LB UB#> mu        0.005     1       1        0 NA NA#> ar1      -0.900     1       1        0 NA NA#> ma        0.000     0       0        0 NA NA#> arfima    0.000     0       0        0 NA NA#> archm     0.000     0       0        0 NA NA#> mxreg     0.000     0       0        0 NA NA#> omega     0.001     1       1        0 NA NA#> alpha1    0.300     1       1        0 NA NA#> beta1     0.650     1       1        0 NA NA#> gamma     0.000     0       0        0 NA NA#> eta1      0.000     0       0        0 NA NA#> eta2      0.000     0       0        0 NA NA#> delta     0.000     0       0        0 NA NA#> lambda    0.000     0       0        0 NA NA#> vxreg     0.000     0       0        0 NA NA#> skew      0.000     0       0        0 NA NA#> shape     0.000     0       0        0 NA NA#> ghlambda  0.000     0       0        0 NA NA#> xi        0.000     0       0        0 NA NA#> $mu#> [1] 0.005#> #> $ar1#> [1] -0.9#> #> $omega#> [1] 0.001#> #> $alpha1#> [1] 0.3#> #> $beta1#> [1] 0.65true_params#>     mu    ar1  omega alpha1  beta1 #>  0.005 -0.900  0.001  0.300  0.650
然后,我们可以生成收益率时间序列:
# 模拟一条路径hpath(garch_spec, n.sim = T)#>  num [1:2000, 1] 0.167 -0.217 # 绘图对数收益{ plot(synth_log_returns, main = "GARCH模型的对数收益", lwd = 1.5)  lines(synth_volatility

GARCH
现在,我们可以估计参数:
# 指定一个GARCH模型ugarchspec(mean.model = list(armaOrder = c(1,0)# 估计模型coef(garch_fit)#>            mu           ar1         omega        alpha1         beta1 #>  0.0036510100 -0.8902333595  0.0008811434  0.2810460728  0.6717486402#>     mu    ar1  omega alpha1  beta1 #>  0.005 -0.900  0.001  0.300  0.650# 系数误差#>           mu          ar1        omega       alpha1        beta1 #> 0.0013489900 0.0097666405 0.0001188566 0.0189539272 0.0217486402
我们还可以研究样本数量T对参数估计误差的影响:
# 循环for (T_ in T_sweep) {  garch_fit   error_coeffs_vs_T <- rbind(error_coeffs_vs_T, abs((coef(garch_fit) - true_params)/true_params))  estim_coeffs_vs_T <- rbind(estim_coeffs_vs_T, coef(garch_fit))# 绘图matplot(T_sweep, 100*error_coeffs_vs_T,         main = "估计GARCH系数的相对误差", xlab = "T", ylab = "误差 (%)",

真实的ω几乎为零,因此误差非常不稳定。至于其他系数,就像在ARMA情况下一样,μ的估计确实很差(相对误差超过50%),而其他系数似乎在T = 800个样本后得到了很好的估计。
GARCH结果比较 
作为健全性检查,我们现在将比较两个软件包 fGarch 和 rugarch的结果:
# 指定具有特定参数值的ARMA(0,0)-GARCH(1,1)作为数据生成过程garch_spec #生成长度为1000的数据path(garch_fixed_spec, n.sim = 1000)@path$# 使用“ rugarch”包指定和拟合模型rugarch_fit          mu      omega     alpha1      beta1 #> 0.09749904 0.01395109 0.13510445 0.73938595#>         mu      omega     alpha1      beta1 #> 0.09750394 0.01392648 0.13527024 0.73971658# 比较拟合的标准偏差print(head(fGarch_fi#> [1] 0.3513549 0.3254788 0.3037747 0.2869034 0.2735266 0.2708994print(head(rugar#> [1] 0.3538569 0.3275037 0.3053974 0.2881853 0.2745264 0.2716555
确实,这两个软件包给出了相同的结果。
使用rugarch包进行GARCH预测 
一旦估计出GARCH模型的参数,就可以使用该模型预测未来的值。例如,基于过去的信息对条件方差的单步预测为

给定ω^ /(1-∑mi =1α^ i-∑sj =1β^ j)。软件包 rugarch 使对样本外数据的预测变得简单:
# 估计模型,不包括样本外garch_fit coef(garch_fit)#>            mu           ar1         omega        alpha1         beta1 #>  0.0034964331 -0.8996287630  0.0006531088  0.3058756796  0.6815452241# 预测整个样本的对数收益garch_fore@forecast$sigmaFor[1, ]# 对数收益图plot(cbind("fitted"   = fitted(garch_fit),     main = "合成对数收益预测", legend.loc = "topleft")

#波动率对数收益图plot(cbind("fitted volatility"   = sigma(garch_fit),     main = "预测合成对数收益率的波动性", legend.loc = "topleft")

不同方法
让我们首先加载S&P500:
# 加载标准普尔500指数数据head(SP500_index_prices)#>              SP500#> 2008-01-02 1447.16#> 2008-01-03 1447.16#> 2008-01-04 1411.63#> 2008-01-07 1416.18#> 2008-01-08 1390.19#> 2008-01-09 1409.13# 准备训练和测试数据x_trn <- x[1:T_trn]x_tst <- x[-c(1:T_trn)]# 绘图{ plot(x, main = "收益"  addEventLines(xts("训练", in

常数
让我们从常数开始:
plot(cbind(sqrt(var_constant), x_trn)     main = "常数")

移动平均值
现在,让我们使用平方收益的移动平均值:

plot(cbind(sqrt(var_t), x_trn),      main = "基于简单滚动平方均值的包络线(时间段=20)

EWMA
指数加权移动平均线(EWMA):

请注意,这也可以建模为ETS(A,N,N)状态空间模型:

plot(cbind(std_t, x_trn),      main = "基于平方EWMA的包络")

乘法ETS
我们还可以尝试ETS模型的不同变体。例如,具有状态空间模型的乘性噪声版本ETS(M,N,N):

3. garch模型如何确定虚拟变量参数值

【摘要】
garch模型如何确定虚拟变量参数值【提问】
您好【回答】
如何确定节日效应适合什么garch模型,如何理由eviews进行虚拟变量的建模,得出系数值【提问】
如果方差用ARMA模型来表示,则ARCH模型的变形为GARCH模型。

GARCH(p,q)模型为【回答】
garch模型如何进行节日效应建模【提问】
【回答】
【回答】
【回答】
【回答】
【回答】
【回答】
建立ARMA-GARCH-GED模型【回答】
然后选择你要选择的节日【回答】
【回答】
【回答】
R方那个我瞎算的【回答】
就这个流程和公式【回答】
你估计吧【回答】
最后用软件直接建模【回答】
建模出来以后图像上就显示【回答】
如何在eviews中操作呢?我选择的是春节效应。怎么才能比较出节前节后的区别【提问】
你比较经济量【回答】
Census不是有五个选择框框【回答】
然后最后有个诊断【回答】
第五个框框【回答】
然后你诊断一下【回答】
抱歉啊,可以从最开始eviews操作步骤教一下吗?【提问】
然后表G就有个直观图【回答】
[emmm]【回答】
我给把操作步骤写出来【回答】
多谢了【提问】
【问一问自定义消息】【提问】
【回答】
会用主菜单里的这三个就行了【回答】
录入分析数据前,先创一个工作文件。【回答】
Workfile【回答】
然后主菜单中打开work对话框。【回答】
进行调整频率和时间序列。【回答】
【提问】
然后在主菜单的object上建立文件。【回答】
你那个按左上角的view改变一下视图就好了。【回答】
您还有什么不懂的都可以咨询我哦【回答】

garch模型如何确定虚拟变量参数值